
crispy-form-foundation Documentation
Release 0.6.4

David THENON

Oct 08, 2018

Contents

1 Links 3

2 Requires 5
2.1 User’s Guide . 5
2.2 Developer’s Guide . 18

Python Module Index 25

i

ii

crispy-form-foundation Documentation, Release 0.6.4

This is a Django application to add django-crispy-forms layout objects for Foundation for sites.

This app does not include Foundation for sites assets, you will have to install them yourself in your projects.

Contents 1

https://www.djangoproject.com/
https://github.com/maraujop/django-crispy-forms
http://foundation.zurb.com/
http://foundation.zurb.com/

crispy-form-foundation Documentation, Release 0.6.4

2 Contents

CHAPTER 1

Links

• Read the documentation on Read the docs;

• Download his PyPi package;

• Clone it on its Github repository;

3

http://crispy-forms-foundation.readthedocs.io/
http://pypi.python.org/pypi/crispy-forms-foundation
https://github.com/sveetch/crispy-forms-foundation

crispy-form-foundation Documentation, Release 0.6.4

4 Chapter 1. Links

CHAPTER 2

Requires

• Django >=1.8;

• django-crispy-forms >= 1.6.x;

2.1 User’s Guide

2.1.1 Install

1. Get it from PyPi:

pip install crispy-forms-foundation

2. Register app in your project settings:

INSTALLED_APPS = (
...
'crispy_forms',
'crispy_forms_foundation',
...

)

3. Import default settings at the end of the settings file:

from crispy_forms_foundation.settings import *

Default template pack name used will be foundation-6.

All other django-crispy-forms settings option apply, see its documentation for more details.

4. Finally you will need to install Foundation assets in your project. For novices, a quick way is to use last
Foundation compiled version from CDN links.

5

https://www.djangoproject.com/
https://github.com/maraujop/django-crispy-forms
https://github.com/maraujop/django-crispy-forms
http://foundation.zurb.com/sites/docs/installation.html#cdn-links

crispy-form-foundation Documentation, Release 0.6.4

2.1.2 Settings

crispy-forms-foundation itself does not have its own settings but overrides some of django-crispy-forms settings:

CRISPY_ALLOWED_TEMPLATE_PACKS To add foundation-5 and foundation-6 template pack
names to allowed template packs.

CRISPY_TEMPLATE_PACK To set default template pack to foundation-6.

CRISPY_CLASS_CONVERTERS To define some input class name converters required for foundation-6.

These settings are defined in crispy_forms_foundation.settings you should have imported (as seen in
Install document).

All other settings from django-crispy-forms still apply to change crispies behaviors.

2.1.3 Basic sample

Import crispy-forms-foundation then you can use the layout objects in your form :

from crispy_forms_foundation.layout import Layout, Fieldset, SplitDateTimeField, Row,
→˓Column, ButtonHolder, Submit

class YourForm(forms.ModelForm):
def __init__(self, *args, **kwargs):

self.helper = FormHelper()
self.helper.form_action = '.'
self.helper.layout = Layout(

Fieldset(
'Content',
'title',
'content',

),
Fieldset(

'Display settings',
Row(

Column('template', css_class='large-6'),
Column('order', css_class='large-3'),
Column('visible', css_class='large-3'),

),
),
Fieldset(

'Publish settings',
'parent',
Row(

Column(SplitDateTimeField('published'), css_class='large-6'),
Column('slug', css_class='large-6'),

),
),
ButtonHolder(

Submit('submit_and_continue', 'Save and continue'),
Submit('submit', 'Save'),

),
)

super(YourForm, self).__init__(*args, **kwargs)

Embedded templates are in crispy_forms_foundation/templates/foundation-5 or
crispy_forms_foundation/templates/foundation-6 depending of your template pack.

6 Chapter 2. Requires

https://github.com/maraujop/django-crispy-forms
https://github.com/maraujop/django-crispy-forms

crispy-form-foundation Documentation, Release 0.6.4

2.1.4 Basic elements

References:

• Foundation 5 Panel;

• Foundation 6 Callout;

class crispy_forms_foundation.layout.base.Div(*fields, **kwargs)
Bases: crispy_forms.layout.Div

It wraps fields inside a <div> element.

You can set css_id for element id and css_class for a element class names.

Example:

Div('form_field_1', 'form_field_2', css_id='div-example',
css_class='divs')

class crispy_forms_foundation.layout.base.Panel(field, *args, **kwargs)
Bases: crispy_forms.layout.Div

Act like Div but add a panel class name.

Panel component has been replaced with the Callout in Foundation-6.

Example:

Panel('form_field_1', 'form_field_2', css_id='div-example',
css_class='divs')

class crispy_forms_foundation.layout.base.Callout(field, *args, **kwargs)
Bases: crispy_forms.layout.Div

Act like Div but add a callout class name.

Callout component is the Foundation-6 replacement of Panel component.

Example:

Callout('form_field_1', 'form_field_2', css_id='div-example',
css_class='divs')

2.1.5 Fields

References

• Foundation 5 Forms;

• Foundation 5 Switches;

• Foundation 6 Forms;

• Foundation 6 Switches;

class crispy_forms_foundation.layout.fields.Field(*args, **kwargs)
Bases: crispy_forms.layout.Field

Layout object, contain one field name and you can add attributes to it easily. For setting class attributes, you
need to use css_class, because class is a reserved Python keyword.

Example:

2.1. User’s Guide 7

http://foundation.zurb.com/sites/docs/v/5.5.3/components/panels.html
http://foundation.zurb.com/sites/docs/callout.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/forms.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/switch.html
http://foundation.zurb.com/sites/docs/forms.html
http://foundation.zurb.com/sites/docs/switch.html

crispy-form-foundation Documentation, Release 0.6.4

Field('field_name', style="color: #333;", css_class="whatever",
id="field_name")

class crispy_forms_foundation.layout.fields.FakeField(*args, **kwargs)
Bases: crispy_forms_foundation.layout.fields.Field

Fake field is intended to be used with some app that does not honor field ID on the input element alike
django-recaptcha that build a textarea with a dummy ID attribute. This leads to HTML validation er-
ror.

Fake field works as basic Field object except a fake_field variable is passed to the template context.

Actually the only difference with a Field is label element drops for attribute.

You should use this field in last resort.

class crispy_forms_foundation.layout.fields.Hidden(name, value, **kwargs)
Bases: crispy_forms.layout.Hidden

Hidden field. Work as basic Field except the hidden value for type attribute.

class crispy_forms_foundation.layout.fields.MultiField(label, *fields, **kwargs)
Bases: crispy_forms.layout.MultiField

MultiField container. Render to a MultiField

class crispy_forms_foundation.layout.fields.SplitDateTimeField(*args,
**kwargs)

Bases: crispy_forms_foundation.layout.fields.Field

Just an inherit from crispy_forms.layout.Field to have a common Field for displaying field with the
django.forms.extra.SplitDateTimeWidget widget.

Simply use a specific template

class crispy_forms_foundation.layout.fields.InlineField(field,
label_column=’large-3’,
input_column=’large-9’,
label_class=”, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.fields.Field

Layout object for rendering an inline field with Foundation

Example:

InlineField('field_name')

Or:

InlineField('field_name', label_column='large-8',
input_column='large-4', label_class='')

label_column, input_column, label_class, are optional argument.

class crispy_forms_foundation.layout.fields.InlineJustifiedField(field, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.fields.InlineField

Same as InlineField but default is to be right aligned with a vertical padding

class crispy_forms_foundation.layout.fields.SwitchField(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.fields.Field

8 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.6.4

A specific field to use Foundation form switches

You must only use this with a checkbox field and this is a raw usage of this Foundation element, you should see
InlineSwitchField instead.

Example:

SwitchField('field_name', style="color: #333;", css_class="whatever",
id="field_name")

class crispy_forms_foundation.layout.fields.InlineSwitchField(field, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.fields.InlineField

Like SwitchField it use Foundation form switches with checkbox field but within an InlineField

Contrary to SwitchField this play nice with the label to be able to display it (as Foundation form switches
default behavior is to hide the label text)

Example:

InlineSwitchField('field_name')

Or:

InlineSwitchField('field_name', label_column='large-8',
input_column='large-4', label_class='',
switch_class="inline")

label_column, input_column, label_class, switch_class are optional argument.

2.1.6 Buttons

References

• Foundation 5 Button;

• Foundation 5 Button Group;

• Foundation 6 Button;

• Foundation 6 Button Group;

class crispy_forms_foundation.layout.buttons.ButtonHolder(*fields, **kwargs)
Bases: crispy_forms.layout.ButtonHolder

It wraps fields in an element <div class="button-holder">.

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonHolder(
HTML(Information Saved),
Submit('Save', 'Save')

)

class crispy_forms_foundation.layout.buttons.ButtonHolderPanel(field, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.buttons.ButtonHolder

2.1. User’s Guide 9

http://foundation.zurb.com/sites/docs/v/5.5.3/components/buttons.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/button_groups.html
http://foundation.zurb.com/sites/docs/button.html
http://foundation.zurb.com/sites/docs/button-group.html

crispy-form-foundation Documentation, Release 0.6.4

Act like ButtonHolder but add a panel class name on the main div.

class crispy_forms_foundation.layout.buttons.ButtonHolderCallout(field, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.buttons.ButtonHolder

Act like ButtonHolder but add a callout class name on the main div.

class crispy_forms_foundation.layout.buttons.ButtonGroup(*fields, **kwargs)
Bases: crispy_forms.layout.LayoutObject

It wraps fields in an element <div class="button-group">.

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonGroup(
Submit('Save', 'Save'),
Button('Cancel', 'Cancel'),

)

class crispy_forms_foundation.layout.buttons.Button(name, value, **kwargs)
Bases: crispy_forms_foundation.layout.buttons.InputButton

This is the old Button object that inherit from InputButton for backward compatibility.

If you want to stand for an input button, you are invited to use InputButton instead to avoid problem when
ButtonElement will become the new Button object.

class crispy_forms_foundation.layout.buttons.Submit(name, value, **kwargs)
Bases: crispy_forms_foundation.layout.buttons.InputSubmit

This is the old Button object that inherit from InputSubmit for backward compatibility.

If you want to stand for an input button, you are invited to use InputSubmit instead to avoid problem when
ButtonSubmit will become the new Submit object.

class crispy_forms_foundation.layout.buttons.Reset(name, value, **kwargs)
Bases: crispy_forms_foundation.layout.buttons.InputReset

This is the old Button object that inherit from InputReset for backward compatibility.

If you want to stand for an input button, you are invited to use InputReset instead to avoid problem when
ButtonReset will become the new Reset object.

class crispy_forms_foundation.layout.buttons.InputButton(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Submit input descriptor for the {% crispy %} template tag:

button = InputButton('Button 1', 'Press Me!')

Note: The first argument is also slugified and turned into the id for the button.

class crispy_forms_foundation.layout.buttons.InputSubmit(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Submit button descriptor for the {% crispy %} template tag:

10 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.6.4

submit = Submit('Search the Site', 'search this site')

class crispy_forms_foundation.layout.buttons.InputReset(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Reset button input descriptor for the {% crispy %} template tag:

reset = Reset('Reset This Form', 'Revert Me!')

class crispy_forms_foundation.layout.buttons.ButtonElement(field, *args,
**kwargs)

Bases: crispy_forms.layout.BaseInput

Contrary to Button, ButtonElement purpose use a <button> element to create a clickable form button and
accept an argument to add free content inside element.

Advantage of <button> is to accept almost any HTML content inside element.

button = ButtonElement('name', 'value',
content="Press Me!")

Note:

• First argument is for name attribute and also turned into the id for the button;

• Second argument is for value attribute and also for element content if not given;

• Third argument is an optional named argument content, if given it will be appended inside element
instead of value. Content string is marked as safe so you can put anything you want;

class crispy_forms_foundation.layout.buttons.ButtonSubmit(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.buttons.ButtonElement

Create a submit button following the ButtonElement behaviors:

button = ButtonSubmit('search', 'go-search',
content="Search this site!")

class crispy_forms_foundation.layout.buttons.ButtonReset(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.buttons.ButtonElement

Create a reset button following the ButtonElement behaviors:

button = ButtonReset('reset', 'revert'
content="Revert Me!")

2.1.7 Grid

References

• Foundation 5 Grid;

• Foundation 6 Grid;

class crispy_forms_foundation.layout.grid.Row(*fields, **kwargs)
Bases: crispy_forms_foundation.layout.base.Div

Wrap fields in a div whose default class is row. Example:

2.1. User’s Guide 11

http://foundation.zurb.com/sites/docs/v/5.5.3/components/grid.html
http://foundation.zurb.com/sites/docs/grid.html

crispy-form-foundation Documentation, Release 0.6.4

Row('form_field_1', 'form_field_2', 'form_field_3')

Act as a div container row, it will embed its items in a div like that:

<div class"row">Content</div>

class crispy_forms_foundation.layout.grid.RowFluid(*fields, **kwargs)
Bases: crispy_forms_foundation.layout.grid.Row

Wrap fields in a div whose default class is “row row-fluid”. Example:

RowFluid('form_field_1', 'form_field_2', 'form_field_3')

It has a same behaviour than Row but add a CSS class “row-fluid” that you can use to have top level row that
take all the container width. You have to put the CSS for this class to your CSS stylesheets. It will embed its
items in a div like that:

<div class"row row-fluid">Content</div>

The CSS to add should be something like that:

/*
* Fluid row takes the full width but keep normal row and columns

* behaviors

*/
@mixin row-fluid-mixin {

max-width: 100%;
// Restore the initial behavior restrained to the grid
.row{

margin: auto;
@include grid-row;
// Preserve nested fluid behavior
&.row-fluid{

max-width: 100%;
}

}
}
.row.row-fluid{

@include row-fluid-mixin;
}
@media #{$small-up} {

.row.small-row-fluid{ @include row-fluid-mixin; }
}
@media #{$medium-up} {

.row.medium-row-fluid{ @include row-fluid-mixin; }
}
@media #{$large-up} {

.row.large-row-fluid{ @include row-fluid-mixin; }
}
@media #{$xlarge-up} {

.row.xlarge-row-fluid{ @include row-fluid-mixin; }
}
@media #{$xxlarge-up} {

.row.xxlarge-row-fluid{ @include row-fluid-mixin; }
}

It must be included after Foundation grid component is imported.

12 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.6.4

class crispy_forms_foundation.layout.grid.Column(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.base.Div

Wrap fields in a div. If not defined, CSS class will default to large-12 columns. columns class is always
appended, so you don’t need to specify it.

This is the column from the Foundation Grid component, all columns should be contained in a Row or a
RowFluid and you will have to define the column type in the css_class attribute.

Example:

Column('form_field_1', 'form_field_2', css_class='small-12 large-6')

Will render to something like that:

<div class"small-12 large-6 columns">...</div>

columns class is always appended, so you don’t need to specify it.

If not defined, css_class will default to large-12.

2.1.8 Form containers

References

• Foundation 5 fieldset;

• Foundation 5 Accordion;

• Foundation 5 Tabs;

• Foundation 6 fieldset;

• Foundation 6 Accordion;

• Foundation 6 Tabs;

class crispy_forms_foundation.layout.containers.Fieldset(legend, *fields,
**kwargs)

Bases: crispy_forms.layout.Fieldset

It wraps fields in a <fieldset>:

Fieldset("Text for the legend",
'form_field_1',
'form_field_2'

)

The first parameter is the text for the fieldset legend. This text is context aware, so you can do things like :

Fieldset("Data for {{ user.username }}",
'form_field_1',
'form_field_2'

)

class crispy_forms_foundation.layout.containers.Container(name, *fields,
**kwargs)

Bases: crispy_forms.bootstrap.Container

Overrides original Container element to get the “active” classname from Class attribute active_css_class
so it’s compatible with Foundation 5 and 6.

2.1. User’s Guide 13

http://foundation.zurb.com/sites/docs/v/5.5.3/components/forms.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/accordion.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/tabs.html
http://foundation.zurb.com/sites/docs/forms.html#fieldset-styles
http://foundation.zurb.com/sites/docs/accordion.html
http://foundation.zurb.com/sites/docs/tabs.html

crispy-form-foundation Documentation, Release 0.6.4

class crispy_forms_foundation.layout.containers.TabHolder(*fields, **kwargs)
Bases: crispy_forms.bootstrap.TabHolder

Tabs holder object to wrap Tab item objects in a container:

TabHolder(
TabItem('My tab 1', 'form_field_1', 'form_field_2'),
TabItem('My tab 2', 'form_field_3')

)

TabHolder direct children should allways be a TabItem layout item.

A random id is builded for the tab holder if you don’t define it using css_id argument.

The first TabItem containing a field error will be marked as active if any, else this will be just the first
TabItem.

render(form, form_style, context, template_pack=<SimpleLazyObject: u’bootstrap’>)
Re-implement almost the same code from crispy_forms but passing form instance to item
render_link method.

class crispy_forms_foundation.layout.containers.VerticalTabHolder(*fields,
**kwargs)

Bases: crispy_forms_foundation.layout.containers.TabHolder

VerticalTabHolder appends vertical class to TabHolder container

class crispy_forms_foundation.layout.containers.TabItem(name, *fields, **kwargs)
Bases: crispy_forms_foundation.layout.containers.Container

Tab item object. It wraps fields in a div whose default class is “tabs” and takes a name as first argument.

Tab item is also responsible of building its associated tab link with its render_link using the
link_template attribute.

Example:

TabItem('My tab', 'form_field_1', 'form_field_2', 'form_field_3')

TabItem layout item has no real utility out of a TabHolder.

has_errors(form)
Find tab fields listed as invalid

render_link(form, template_pack=<SimpleLazyObject: u’bootstrap’>, **kwargs)
Render the link for the tab-pane. It must be called after render so css_class is updated with active
class name if needed.

class crispy_forms_foundation.layout.containers.AccordionHolder(*fields,
**kwargs)

Bases: crispy_forms.bootstrap.Accordion

Accordion items holder object to wrap Accordion item objects in a container:

AccordionHolder(
AccordionItem("group name", "form_field_1", "form_field_2"),
AccordionItem("another group name", "form_field"),

)

AccordionHolder direct children should allways be a AccordionItem layout item.

A random id is builded for the accordion holder if you don’t define it using css_id argument.

14 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.6.4

The first AccordionItem containing a field error will be marked as active if any, else this will be just the first
AccordionItem.

render(form, form_style, context, template_pack=<SimpleLazyObject: u’bootstrap’>, **kwargs)
Re-implement almost the same code from crispy_forms but using form instance to catch field errors.

class crispy_forms_foundation.layout.containers.AccordionItem(name, *fields,
**kwargs)

Bases: crispy_forms.bootstrap.AccordionGroup

Accordion item object. It wraps given fields inside an accordion tab. It takes accordion tab name as first
argument.

The item name is also slugified to build an id for the tab if you don’t define it using css_id argument.

Example:

AccordionItem("group name", "form_field_1", "form_field_2")

2.1.9 Use Foundation Abide validation

You can use Abide validation in your form but note that there is no support within the layout objects. You will have to
add the required attribute (and eventually its validation pattern) on your field widgets in your form like this:

title = forms.CharField(label=_('Title'), widget=forms.TextInput(attrs={'required':''}
→˓), required=True)

To enable Abide on your form, you’ll have to load its Javascript library (if you don’t load yet the whole Foundation
library) then in your form helper you will have to add its attribute on the form like this :

class SampleForm(forms.Form):
title = forms.CharField(label=_('Title'), widget=forms.TextInput(attrs={'required

→˓':''}), required=True)
textarea_input = forms.CharField(label=_('Textarea'), widget=forms.Textarea(attrs=

→˓{'required':''}), required=True)

def __init__(self, *args, **kwargs):
self.helper = FormHelper()

Enable Abide validation on the form
self.helper.attrs = {'data_abide': '', 'novalidate': ''}

self.helper.form_action = '.'
self.helper.layout = Layout(

...
)

super(SampleForm, self).__init__(*args, **kwargs)

If needed, you can define an Abide error message directly on the field like this :

class SampleForm(forms.Form):
def __init__(self, *args, **kwargs):

super(SampleForm, self).__init__(*args, **kwargs)
self.fields['textarea_input'].abide_msg = "This field is required !"

2.1. User’s Guide 15

http://foundation.zurb.com/docs/components/abide.html
http://foundation.zurb.com/docs/components/abide.html
http://foundation.zurb.com/docs/components/abide.html

crispy-form-foundation Documentation, Release 0.6.4

Support within tabs

Default Abide behavior is not aware of Tabs and so input errors can be hided when they are not in the active tab.

crispy-forms-foundation ships a jQuery plugin that add support for this usage, you will need to load it in your pages
then initialize it on your form:

<script type="text/javascript" src="{{ STATIC_URL }}js/crispy_forms_foundation/
→˓plugins.js"></script>
<script type="text/javascript">
//<![CDATA[
$(document).ready(function() {

$('form').abide_support_for_tabs();
});
//]]>
</script>

This way, all input errors will be raised to their tab name that will display an error mark.

Support within accordions

Like with tabs, there is a jQuery plugin to add Abide support within accordions.

You will need to load it in your pages then initialize it on your form:

<script type="text/javascript" src="{{ STATIC_URL }}js/crispy_forms_foundation/
→˓plugins.js"></script>
<script type="text/javascript">
//<![CDATA[
$(document).ready(function() {

$('form').abide_support_for_accordions();
});
//]]>
</script>

2.1.10 Form objects

There is some forms you can use to quickly and automatically create a Foundation layout for your forms. This is
mostly for fast integration or prototyping because it will probably never totally fit to your design.

class crispy_forms_foundation.forms.FoundationForm(*args, **kwargs)
Bases: crispy_forms_foundation.forms.FoundationFormMixin, django.forms.forms.
Form

A Django form that inherit from FoundationFormMixin to automatically build a form layout

Example:

from django import forms
from crispy_forms_foundation.forms import FoundationForm

class YourForm(FoundationForm):
title = "Testing"
action = 'test'
layout = Layout(Fieldset("Section", "my_field", "my_field_2"))
switches = False

(continues on next page)

16 Chapter 2. Requires

http://foundation.zurb.com/docs/components/abide.html
http://foundation.zurb.com/docs/components/abide.html

crispy-form-foundation Documentation, Release 0.6.4

(continued from previous page)

attrs = {'data_abide': ""}

title = forms.CharField(label='Title', required=True)
slug = forms.CharField(label='Slug', required=False)

class crispy_forms_foundation.forms.FoundationFormMixin
Bases: object

Mixin to implement the layout helper that will automatically build a form layout

Generally, you will prefer to use FoundationForm or FoundationModelForm instead.

If you still want to directly use this mixin you’ll just have to execute FoundationFormMixin.
init_helper() in your form init.

Attributes

title If set, defines the form’s title

layout If set, override the default layout for the form

error_title Defines the error title for non field errors

form_id Defines the id of the form

classes Defines the classes used on the form

action Defines the action of the form. reverse will be called on the value. On failure the value will be
assigned as is

method Defines the method used for the action

attrs Defines the attributes of the form

switches If True, will replace all fields checkboxes with switches

submit Adds a submit button on the form. Can be set to a Submit object or a string which will be used as the
value of the submit button

title_templatestring Template string used to display form title (if any)

class crispy_forms_foundation.forms.FoundationModelForm(*args, **kwargs)
Bases: crispy_forms_foundation.forms.FoundationFormMixin, django.forms.
models.ModelForm

A Django Model form that inherit from FoundationFormMixin to automatically build a form layout

Example:

from crispy_forms_foundation.forms import FoundationModelForm

class YourForm(FoundationModelForm):
title = "Testing"
action = 'test'
layout = Layout(Fieldset("Section", "my_field", "my_field_2"))
switches = False
attrs = {'data_abide': ""}

class Meta:
model = MyModel
fields = ['my_field', 'my_field_2', 'my_field_3']

2.1. User’s Guide 17

crispy-form-foundation Documentation, Release 0.6.4

2.2 Developer’s Guide

2.2.1 Development

Development requirement

crispy-form-foundation is developed with:

• Unittests using Pytest;

• Respecting flake and pip8 rules using Flake8;

• Sphinx for documentation with enabled Napoleon extension (using only the Google style);

• tox to test again different Python and Django versions;

Every requirement is available in file requirements/dev.txt (except for tox).

Install for development

First ensure you have pip and python-venv package installed, clone crispy-form-foundation repository, enter its
directory and just type:

make install-dev

Unittests

Unittests are made to works on Pytest, a shortcut in Makefile is available to start them on your current development
install:

make tests

Tox

To ease development again multiple Python and Django versions, a tox configuration has been added. You are strongly
encouraged to use it to test your pull requests.

Before using it you will need to install tox, it is recommended to install it at your system level so dependancy is not in
tests requirements file:

sudo pip install tox

Then go in the crispy-form-foundation repository directory where live the setup.py and tox.ini files and execute
tox:

tox

Documentation

You should see about sphinx-autobuild for a watcher which automatically rebuild HTML documentation when you
change sources.

When installed you can use following command from docs/ directory:

18 Chapter 2. Requires

http://pytest.org
http://flake8.readthedocs.io
http://www.sphinx-doc.org
https://sphinxcontrib-napoleon.readthedocs.io
http://tox.readthedocs.io
https://pip.pypa.io
http://pytest.org
https://github.com/GaretJax/sphinx-autobuild

crispy-form-foundation Documentation, Release 0.6.4

make livehtml

2.2.2 Changelog

Version 0.7.0 - 2017/10/08

Add support for Django 2.0 and 2.1

• Rewrite package to use setup.cfg;

• Add support for Django 2.0 and Django 2.1, close #36;

• Django 1.11 support is the last one for Python2;

• Change old demo project to more cleaner sandbox;

• Included fix from django-crispy-forms#836 for FormHelper.field_template usage in uniform, close
#39;

Version 0.6.4 - 2017/07/29

• Fixed layout.buttons.ButtonGroup for deprecated Context() usage;

• Fixed tests that performs comparison on html part using django.test.html.parse_html;

Version 0.6.3 - 2017/07/16

This release adds some bugfixes with Abide, new button objects that will replace the old ones a release and Foundation5
support will be removed for the next (non bugfix) release.

• Removed is-visible class and added missing data-form-error-for attribute in Foundation6 field
templates, close #33;

• Added new field layout.fields.FakeField;

• Fixed tests to always compare rendered value to attempted value, so the test error output diffs are allways in the
same order;

• Updated documentation;

• Adopted new settings structure in project/settings/, removed db.sqlite3 from repository;

• Enabled django-debug-toolbar in development environment and settings for demo only (not for tests);

• Moved layout.buttons.Hidden to layout.fields.Hidden;

• Added layout.buttons.ButtonElement, layout.buttons.ButtonSubmit and layout.
buttons.ButtonReset to button input as real <button/> element but keeping old input button behavior
for now. This is on the way to replace respectively Button, Submit and Reset. Close #28;

• Added layout.buttons.InputButton, layout.buttons.InputSubmit and layout.
buttons.InputReset to maintain backward compatibility when the button objects will replace the
old ones;

2.2. Developer’s Guide 19

crispy-form-foundation Documentation, Release 0.6.4

Version 0.6.2 - 2017/07/03

• Validated working with Django 1.11 from unittests;

• Dropped testing for Django >= 1.10 with Python 2.x in tox config;

Version 0.6.1 - 2017/07/03

• Cleaned tests structure so it runs everywhere;

• Fixed tests to pass with tox on every supported Django versions;

• Better Makefile;

• Upgraded dependancy django-crispy-forms to 1.6.1 since it backward compatible with Django 1.8;

• Updated documentation;

Version 0.6.0 - 2017/02/11

This release adds Foundation for site version 6 support, version 5 support is still available for now.

• Added ‘foundation-6’ templates, copied from @flesser branch foundation-6;

• Added layout.base.Callout element;

• Added crispy_forms_foundation.templatetags.crispy_forms_foundation_field to
re-implement crispy_field filter so we can have the right input field error for Foundation-6;

• Added layout.buttons.ButtonHolderCallout;

• Chanded .help-text that is allways a <p> in Foundation6 (does not have real meaning in Foundation5);

• Changed layout.containers.TabHolder so it build a random id for container if css_id is not given;

• Changed layout.containers.Container to be able to manage the active classname
active_css_class Class attribute or its get_active_css_class method, and add it a condi-
tion to use another class name for Foundation-6 (is-active instead of active);

• Changed layout components to get template pack name from lazy object from crispy_forms.utils.
TEMPLATE_PACK;

• Changed documentation for better structure;

• Improved unittests to perform for both foundation-5 and foundation-6 template packs;

• Fixed demo views and forms so they can switch between template packs;

• Fixed layout elements so their template does not include TEMPLATE_PACK anymore in class defintions;

• Fixed switches for Foundation-6;

• Fixed button group for Foundation-6;

• Fixed InlineJustifiedField for Foundation-6;

• Fixed error messages for Foundation-6;

• Fixed Accordion for Foundation-6;

• Fixed Tabs for Foundation-6;

20 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.6.4

Version 0.5.5 - 2017/02/01

• Dropped support for Python 2.6 and Django<1.8;

• Added default app settings file;

• Added project test structure;

• Added pretty simple tests to cover layout elements which include some code;

• Added demo app taken from crispy-form-foundation-demo;

• Added dev and test requirements files;

• Updated setup.py;

• Added and enabled minified basic assets for Foundation 5 and 6 for test and demo;

• Finished demo urls/templates to work on every Foundation versions;

• Fixed Flake issues;

• Validated test with Tox for Python 2.7, Python 3.5 and Django>=1.8,<=1.10;

Backward compatibility change for foundation-5 template pack:

• Moved Tab link template tab-item.html to tab-link.html;

• Added tab-item.html to build the Tab item instead of using the Div default template;

Everything should still work as with previous version.

Version 0.5.4 - 2016/02/26

• Fixed TabHolder and AccordionHolder to have the right active behavior on their items: activate the first
item with a field error if any, else just activate the first item;

Version 0.5.3 - 2015/09/25

• Fixed bugs with button layout elements since django-crispy-forms==1.5.x, this is backward compatible with
previous django-crispy-forms<1.5.x (with pull request #26 to close #25);

• Fixed package infos and README to be more explicit on Django compatibility (1.4 to 1.8 actually tested);

Version 0.5.2 - 2015/07/12

• Use relative imports and enforce absolute imports;

• Add german and french translation with i18n;

Version 0.5.1 - 2015/05/02

• Fix ‘disable_csrf’ option that was not honored in template forms;

2.2. Developer’s Guide 21

crispy-form-foundation Documentation, Release 0.6.4

Version 0.5.0 - 2015/04/02

• Better layout elements organization;

• Merged pull request #20 for Added Foundation tabs and accordion components based on crispy-forms boot-
strap3 implementation;

• Removed all stuff for Foundation 3 that is not supported anymore;

• Fix TabItem and TabHolder so tab inputs errors are raised to the Tab item;

• Fix AccordionItem and AccordionHolder so accordion inputs errors are raised to the accordion item name;

• Add jquery plugin to add Abide support within tabs and accordions so the input errors are raised to their title
name and not hided into contents;

• Update documentation;

Version 0.4.1 - 2015/02/22

• Added docs for submit button;

• Fixed bug where the class layout property was being used and modified by instances;

• Added Contributors to the doc;

Version 0.4 - 2014/11/29

• Allow unicode characters in the form title in forms.FoundationFormMixin;

• Extended forms.FoundationFormMixin.init_helper() to allow more customization:

– Renamed attribute input to submit as this is more descriptive

– Allow to give a string which is used as display text for the Submit button

– Allow to give a Submit instance wich is directly used

• Added forms.FoundationFormMixin.title_templatestring attribute to store template string
used to display form title;

• Moved forms.FoundationFormMixin.id attribute name to forms.FoundationFormMixin.
form_id;

Version 0.3.9 - 2014/11/21

• Added FoundationFormMixin, FoundationForm and FoundationModelForm in forms.py to
quickly and automatically create a Foundation layout;

• Added InlineSwitchField layout element for better switches usage;

Version 0.3.8 - 2014/11/16

• Redesigned non field errors;

• Added abide error message on field;

• Added missing error message and help text on inline field;

22 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.6.4

Version 0.3.7 - 2014/11/15

• Added better documentation with Sphinx in ‘docs/’;

Version 0.3.6

• Added ButtonGroup to use Foundation’s Button groups instead of Button holder;

• Added Panel layout element that act like a Div but add a panel css class name;

Version 0.3.5

• Added SwitchField field;

Version 0.3.3

• Fix bad template includes in some templates;

Version 0.3.2

• Fixed some css class in templates;

• Added documentation for Abide usage;

• Added ButtonHolderPanel layout object;

Version 0.3.1

• Added InlineField and InlineJustifiedField;

Version 0.3.0 - 2014/03/28

Some backward incompatible change have been done, be sure to check them before upgrading.

• Removed sample view, url and templates. If needed you can find a Django app sample on crispy-forms-
foundation-demo;

• Moved foundation template pack name and its directory to foundation-3. You have to change your
settings.CRISPY_TEMPLATE_PACK if you used the old one;

• Added foundation-5 template pack, it is now the default template pack;

• Removed camelcase on some css classes :

– ctrlHolder has changed to holder;

– buttonHolder has changed to button-holder;

– asteriskField has changed to asterisk;

– errorField has changed to error;

– formHint has changed to hint;

– inlineLabel has changed to inline-label;

– multiField has changed to multiple-fields;

2.2. Developer’s Guide 23

https://github.com/sveetch/crispy-forms-foundation-demo
https://github.com/sveetch/crispy-forms-foundation-demo

crispy-form-foundation Documentation, Release 0.6.4

Version 0.1.0 - 2012/12/23

First commit.

2.2.3 Contributors

• Philip Garnero (@PhilipGarnero);

• Juerg Rast (@jrast);

• JR (@jayarnielsen);

• Carsolcas (@carsolcas);

• Simon Bächler (@sbaechler);

• Manu Phatak (@bionikspoon);

• Florian Eßer (@flesser);

• Xabier Bello (@xbello);

24 Chapter 2. Requires

https://github.com/PhilipGarnero
https://github.com/jrast
https://github.com/jayarnielsen
https://github.com/carsolcas
https://github.com/sbaechler
https://github.com/bionikspoon
https://github.com/flesser
https://github.com/xbello

Python Module Index

c
crispy_forms_foundation.forms, 16
crispy_forms_foundation.layout.base, 6
crispy_forms_foundation.layout.buttons,

9
crispy_forms_foundation.layout.containers,

13
crispy_forms_foundation.layout.fields,

7
crispy_forms_foundation.layout.grid, 11

25

crispy-form-foundation Documentation, Release 0.6.4

26 Python Module Index

Index

A
AccordionHolder (class in

crispy_forms_foundation.layout.containers),
14

AccordionItem (class in
crispy_forms_foundation.layout.containers),
15

B
Button (class in crispy_forms_foundation.layout.buttons),

10
ButtonElement (class in

crispy_forms_foundation.layout.buttons),
11

ButtonGroup (class in
crispy_forms_foundation.layout.buttons),
10

ButtonHolder (class in
crispy_forms_foundation.layout.buttons),
9

ButtonHolderCallout (class in
crispy_forms_foundation.layout.buttons),
10

ButtonHolderPanel (class in
crispy_forms_foundation.layout.buttons),
9

ButtonReset (class in crispy_forms_foundation.layout.buttons),
11

ButtonSubmit (class in
crispy_forms_foundation.layout.buttons),
11

C
Callout (class in crispy_forms_foundation.layout.base), 7
Column (class in crispy_forms_foundation.layout.grid),

12
Container (class in crispy_forms_foundation.layout.containers),

13
crispy_forms_foundation.forms (module), 16

crispy_forms_foundation.layout.base (module), 6
crispy_forms_foundation.layout.buttons (module), 9
crispy_forms_foundation.layout.containers (module), 13
crispy_forms_foundation.layout.fields (module), 7
crispy_forms_foundation.layout.grid (module), 11

D
Div (class in crispy_forms_foundation.layout.base), 7

F
FakeField (class in crispy_forms_foundation.layout.fields),

8
Field (class in crispy_forms_foundation.layout.fields), 7
Fieldset (class in crispy_forms_foundation.layout.containers),

13
FoundationForm (class in

crispy_forms_foundation.forms), 16
FoundationFormMixin (class in

crispy_forms_foundation.forms), 17
FoundationModelForm (class in

crispy_forms_foundation.forms), 17

H
has_errors() (crispy_forms_foundation.layout.containers.TabItem

method), 14
Hidden (class in crispy_forms_foundation.layout.fields),

8

I
InlineField (class in crispy_forms_foundation.layout.fields),

8
InlineJustifiedField (class in

crispy_forms_foundation.layout.fields), 8
InlineSwitchField (class in

crispy_forms_foundation.layout.fields), 9
InputButton (class in crispy_forms_foundation.layout.buttons),

10
InputReset (class in crispy_forms_foundation.layout.buttons),

11

27

crispy-form-foundation Documentation, Release 0.6.4

InputSubmit (class in crispy_forms_foundation.layout.buttons),
10

M
MultiField (class in crispy_forms_foundation.layout.fields),

8

P
Panel (class in crispy_forms_foundation.layout.base), 7

R
render() (crispy_forms_foundation.layout.containers.AccordionHolder

method), 15
render() (crispy_forms_foundation.layout.containers.TabHolder

method), 14
render_link() (crispy_forms_foundation.layout.containers.TabItem

method), 14
Reset (class in crispy_forms_foundation.layout.buttons),

10
Row (class in crispy_forms_foundation.layout.grid), 11
RowFluid (class in crispy_forms_foundation.layout.grid),

12

S
SplitDateTimeField (class in

crispy_forms_foundation.layout.fields), 8
Submit (class in crispy_forms_foundation.layout.buttons),

10
SwitchField (class in crispy_forms_foundation.layout.fields),

8

T
TabHolder (class in crispy_forms_foundation.layout.containers),

13
TabItem (class in crispy_forms_foundation.layout.containers),

14

V
VerticalTabHolder (class in

crispy_forms_foundation.layout.containers),
14

28 Index

	Links
	Requires
	User’s Guide
	Developer’s Guide

	Python Module Index

