
crispy-form-foundation Documentation
Release 0.5.5

David THENON

February 01, 2017

Contents

1 Links 3

2 Requires 5
2.1 Table of contents . 5
2.2 History . 20

Python Module Index 25

i

ii

crispy-form-foundation Documentation, Release 0.5.5

This is a Django application to add django-crispy-forms layout objects for Foundation for sites.

This app does not include a Foundation for sites release, you will have to install it yourself in your projects.

Contents 1

https://www.djangoproject.com/
https://github.com/maraujop/django-crispy-forms
http://github.com/zurb/foundation
http://github.com/zurb/foundation

crispy-form-foundation Documentation, Release 0.5.5

2 Contents

CHAPTER 1

Links

• Read the documentation on Read the docs;

• Download his PyPi package;

• Clone it on his Github repository;

3

http://crispy-forms-foundation.readthedocs.io/
http://pypi.python.org/pypi/crispy-forms-foundation
https://github.com/sveetch/crispy-forms-foundation

crispy-form-foundation Documentation, Release 0.5.5

4 Chapter 1. Links

CHAPTER 2

Requires

• Django >=1.8, <=1.10;

• django-crispy-forms >= 1.4.x;

2.1 Table of contents

2.1.1 Install

1. Get it from PyPi:

pip install crispy-forms-foundation

2. Register app in your project settings:

INSTALLED_APPS = (
...
'crispy_forms',
'crispy_forms_foundation',
...

)

3. Import default settings at the end of the settings file:

from crispy_forms_foundation.settings import *

Default template pack name used will be foundation-5.

All other django-crispy-forms settings option apply, see its documentation for more details.

2.1.2 Usage

Import crispy-forms-foundation then you can use the layout objects in your form :

from crispy_forms_foundation.layout import Layout, Fieldset, SplitDateTimeField, Row, Column, ButtonHolder, Submit

class YourForm(forms.ModelForm):
def __init__(self, *args, **kwargs):

self.helper = FormHelper()
self.helper.form_action = '.'
self.helper.layout = Layout(

Fieldset(

5

https://www.djangoproject.com/
https://github.com/maraujop/django-crispy-forms
https://github.com/maraujop/django-crispy-forms

crispy-form-foundation Documentation, Release 0.5.5

'Content',
'title',
'content',

),
Fieldset(

'Display settings',
Row(

Column('template', css_class='large-6'),
Column('order', css_class='large-3'),
Column('visible', css_class='large-3'),

),
),
Fieldset(

'Publish settings',
'parent',
Row(

Column(SplitDateTimeField('published'), css_class='large-6'),
Column('slug', css_class='large-6'),

),
),
ButtonHolder(

Submit('submit_and_continue', 'Save and continue'),
Submit('submit', 'Save'),

),
)

super(YourForm, self).__init__(*args, **kwargs)

The embedded templates are in crispy_forms_foundation/templates/foundation-5.

Use Foundation Abide validation

You can use Abide validation in your form but note that there is no support within the layout objects. You will have to
add the required attribute (and eventually its validation pattern) on your field widgets in your form like this:

title = forms.CharField(label=_('Title'), widget=forms.TextInput(attrs={'required':''}), required=True)

To enable Abide on your form, you’ll have to load its Javascript library (if you don’t load yet the whole Foundation
library) then in your form helper you will have to add its attribute on the form like this :

class SampleForm(forms.Form):
title = forms.CharField(label=_('Title'), widget=forms.TextInput(attrs={'required':''}), required=True)
textarea_input = forms.CharField(label=_('Textarea'), widget=forms.Textarea(attrs={'required':''}), required=True)

def __init__(self, *args, **kwargs):
self.helper = FormHelper()

Enable Abide validation on the form
self.helper.attrs = {'data_abide': ''}

self.helper.form_action = '.'
self.helper.layout = Layout(

...
)

super(SampleForm, self).__init__(*args, **kwargs)

You can also set an Abide error message directly on the field like this :

6 Chapter 2. Requires

http://foundation.zurb.com/docs/components/abide.html
http://foundation.zurb.com/docs/components/abide.html
http://foundation.zurb.com/docs/components/abide.html

crispy-form-foundation Documentation, Release 0.5.5

class SampleForm(forms.Form):
def __init__(self, *args, **kwargs):

super(SampleForm, self).__init__(*args, **kwargs)
self.fields['textarea_input'].abide_msg = "This field is required !"

Support within tabs

Default Abide behavior is not aware of Tabs and so input errors can be hided when they are not in the active tab.

crispy-forms-foundation ships a jQuery plugin that add support for this usage, you will need to load it in your pages
then initialize it on your form:

<script type="text/javascript" src="{{ STATIC_URL }}js/crispy_forms_foundation/plugins.js"></script>
<script type="text/javascript">
//<![CDATA[
$(document).ready(function() {

$('form').abide_support_for_tabs();
});
//]]>
</script>

This way, all input errors will be raised to their tab name that will display an error mark.

Support within accordions

Like with tabs, there is a jQuery plugin to add Abide support within accordions.

You will need to load it in your pages then initialize it on your form:

<script type="text/javascript" src="{{ STATIC_URL }}js/crispy_forms_foundation/plugins.js"></script>
<script type="text/javascript">
//<![CDATA[
$(document).ready(function() {

$('form').abide_support_for_accordions();
});
//]]>
</script>

Automatic form layout

There is some forms you can use to quickly and automatically create a Foundation layout for your forms. This is
mostly for fast integration or prototyping because it will probably never totally fit to your design.

class crispy_forms_foundation.forms.FoundationForm(*args, **kwargs)
Bases: crispy_forms_foundation.forms.FoundationFormMixin,
django.forms.forms.Form

A Django form that inherit from FoundationFormMixin to automatically build a form layout

Example:

from django import forms
from crispy_forms_foundation.forms import FoundationForm

class YourForm(FoundationForm):
title = "Testing"

2.1. Table of contents 7

http://foundation.zurb.com/docs/components/abide.html
http://foundation.zurb.com/docs/components/abide.html

crispy-form-foundation Documentation, Release 0.5.5

action = 'test'
layout = Layout(Fieldset("Section", "my_field", "my_field_2"))
switches = False
attrs = {'data_abide': ""}

title = forms.CharField(label='Title', required=True)
slug = forms.CharField(label='Slug', required=False)

class crispy_forms_foundation.forms.FoundationFormMixin
Bases: object

Mixin to implement the layout helper that will automatically build a form layout

Generally, you will prefer to use FoundationForm or FoundationModelForm instead.

If you still want to directly use this mixin you’ll just have to execute
FoundationFormMixin.init_helper() in your form init.

Attributes

title If set, defines the form’s title

layout If set, override the default layout for the form

error_title Defines the error title for non field errors

form_id Defines the id of the form

classes Defines the classes used on the form

action Defines the action of the form. reverse will be called on the value. On failure the value will be
assigned as is

method Defines the method used for the action

attrs Defines the attributes of the form

switches If True, will replace all fields checkboxes with switches

submit Adds a submit button on the form. Can be set to a Submit object or a string which will be used as the
value of the submit button

title_templatestring Template string used to display form title (if any)

class crispy_forms_foundation.forms.FoundationModelForm(*args, **kwargs)
Bases: crispy_forms_foundation.forms.FoundationFormMixin,
django.forms.models.ModelForm

A Django Model form that inherit from FoundationFormMixin to automatically build a form layout

Example:

from crispy_forms_foundation.forms import FoundationModelForm

class YourForm(FoundationModelForm):
title = "Testing"
action = 'test'
layout = Layout(Fieldset("Section", "my_field", "my_field_2"))
switches = False
attrs = {'data_abide': ""}

class Meta:
model = MyModel
fields = ['my_field', 'my_field_2', 'my_field_3']

8 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.5.5

2.1.3 Layout items

Layout items for Foundation components

Inherits from the default crispy_forms layout objects to force templates on the right TEMPLATE_PACK (defined from
settings.CRISPY_TEMPLATE_PACK) and implements Foundation components.

class crispy_forms_foundation.layout.Div(*fields, **kwargs)
Bases: crispy_forms.layout.Div

It wraps fields in a <div>

You can set css_id for a DOM id and css_class for a DOM class.

Example:

Div('form_field_1', 'form_field_2', css_id='div-example',
css_class='divs')

class crispy_forms_foundation.layout.Panel(field, *args, **kwargs)
Bases: crispy_forms.layout.Div

Act like Div but add a panel css class.

Example:

Panel('form_field_1', 'form_field_2', css_id='div-example',
css_class='divs')

class crispy_forms_foundation.layout.Row(*fields, **kwargs)
Bases: crispy_forms_foundation.layout.base.Div

Wrap fields in a div whose default class is row. Example:

Row('form_field_1', 'form_field_2', 'form_field_3')

Act as a div container row, it will embed its items in a div like that:

<div class"row">Content</div>

class crispy_forms_foundation.layout.RowFluid(*fields, **kwargs)
Bases: crispy_forms_foundation.layout.grid.Row

Wrap fields in a div whose default class is “row row-fluid”. Example:

RowFluid('form_field_1', 'form_field_2', 'form_field_3')

It has a same behaviour than Row but add a CSS class “row-fluid” that you can use to have top level row that
take all the container width. You have to put the CSS for this class to your CSS stylesheets. It will embed its
items in a div like that:

<div class"row row-fluid">Content</div>

The CSS to add should be something like that:

/*
* Fluid row takes the full width but keep normal row and columns

* behaviors

*/
@mixin row-fluid-mixin {

max-width: 100%;
// Restore the initial behavior restrained to the grid
.row{

2.1. Table of contents 9

crispy-form-foundation Documentation, Release 0.5.5

margin: auto;
@include grid-row;
// Preserve nested fluid behavior
&.row-fluid{

max-width: 100%;
}

}
}
.row.row-fluid{

@include row-fluid-mixin;
}
@media #{$small-up} {

.row.small-row-fluid{ @include row-fluid-mixin; }
}
@media #{$medium-up} {

.row.medium-row-fluid{ @include row-fluid-mixin; }
}
@media #{$large-up} {

.row.large-row-fluid{ @include row-fluid-mixin; }
}
@media #{$xlarge-up} {

.row.xlarge-row-fluid{ @include row-fluid-mixin; }
}
@media #{$xxlarge-up} {

.row.xxlarge-row-fluid{ @include row-fluid-mixin; }
}

It must be included after Foundation grid component is imported.

class crispy_forms_foundation.layout.Column(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.base.Div

Wrap fields in a div. If not defined, CSS class will default to large-12 columns. columns class is always
appended, so you don’t need to specify it.

This is the column from the Foundation Grid, all columns should be contained in a Row or a RowFluid and you
will have to define the column type in the css_class attribute.

Example:

Column('form_field_1', 'form_field_2', css_class='small-12 large-6')

Will render to something like that:

<div class"small-12 large-6 columns">...</div>

columns class is always appended, so you don’t need to specify it.

If not defined, css_class will default to large-12.

class crispy_forms_foundation.layout.Field(*args, **kwargs)
Bases: crispy_forms.layout.Field

Layout object, contain one field name and you can add attributes to it easily. For setting class attributes, you
need to use css_class, because class is a reserved Python keyword.

Example:

Field('field_name', style="color: #333;", css_class="whatever",
id="field_name")

10 Chapter 2. Requires

http://foundation.zurb.com/sites/docs/v/5.5.3/components/grid.html

crispy-form-foundation Documentation, Release 0.5.5

class crispy_forms_foundation.layout.MultiField(label, *fields, **kwargs)
Bases: crispy_forms.layout.MultiField

MultiField container. Render to a MultiField

class crispy_forms_foundation.layout.SplitDateTimeField(*args, **kwargs)
Bases: crispy_forms_foundation.layout.fields.Field

Just an inherit from crispy_forms.layout.Field to have a common Field for displaying field with the
django.forms.extra.SplitDateTimeWidget widget.

Simply use a specific template

class crispy_forms_foundation.layout.InlineField(field, label_column=’large-3’,
input_column=’large-9’, label_class=’‘,
*args, **kwargs)

Bases: crispy_forms_foundation.layout.fields.Field

Layout object for rendering an inline field with Foundation

Example:

InlineField('field_name')

Or:

InlineField('field_name', label_column='large-8',
input_column='large-4', label_class='')

label_column, input_column, label_class, are optional argument.

class crispy_forms_foundation.layout.InlineJustifiedField(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.fields.InlineField

Same as InlineField but default is to be right aligned with a vertical padding

class crispy_forms_foundation.layout.SwitchField(field, *args, **kwargs)
Bases: crispy_forms.layout.Field

A specific field to use Foundation form switches

You must only use this with a checkbox field and this is a raw usage of this Foundation element, you should see
InlineSwitchField instead.

Example:

SwitchField('field_name', style="color: #333;", css_class="whatever",
id="field_name")

class crispy_forms_foundation.layout.InlineSwitchField(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.fields.InlineField

Like SwitchField it use Foundation form switches with checkbox field but within an InlineField

Contrary to SwitchField this play nice with the label to be able to display it (as Foundation form switches
default behavior is to hide the label text)

Example:

InlineSwitchField('field_name')

Or:

2.1. Table of contents 11

crispy-form-foundation Documentation, Release 0.5.5

InlineSwitchField('field_name', label_column='large-8',
input_column='large-4', label_class='',
switch_class="inline")

label_column, input_column, label_class, switch_class are optional argument.

class crispy_forms_foundation.layout.ButtonHolder(*fields, **kwargs)
Bases: crispy_forms.layout.ButtonHolder

It wraps fields in a <div class="button-holder">

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonHolder(
HTML(Information Saved),
Submit('Save', 'Save')

)

class crispy_forms_foundation.layout.ButtonHolderPanel(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.buttons.ButtonHolder

Act like ButtonHolder but add a panel css class on the main div

class crispy_forms_foundation.layout.ButtonGroup(*fields, **kwargs)
Bases: crispy_forms.layout.LayoutObject

It wraps fields in a <ul class="button-group">

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonGroup(
Submit('Save', 'Save'),
Button('Cancel', 'Cancel'),

)

class crispy_forms_foundation.layout.Button(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Submit input descriptor for the {% crispy %} template tag:

button = Button('Button 1', 'Press Me!')

Note: The first argument is also slugified and turned into the id for the button.

class crispy_forms_foundation.layout.Submit(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Submit button descriptor for the {% crispy %} template tag:

submit = Submit('Search the Site', 'search this site')

Note: The first argument is also slugified and turned into the id for the submit button.

12 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.5.5

class crispy_forms_foundation.layout.Hidden(name, value, **kwargs)
Bases: crispy_forms.layout.Hidden

Used to create a Hidden input descriptor for the {% crispy %} template tag.

class crispy_forms_foundation.layout.Reset(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Reset button input descriptor for the {% crispy %} template tag:

reset = Reset('Reset This Form', 'Revert Me!')

Note: The first argument is also slugified and turned into the id for the reset.

class crispy_forms_foundation.layout.Fieldset(legend, *fields, **kwargs)
Bases: crispy_forms.layout.Fieldset

It wraps fields in a <fieldset>:

Fieldset("Text for the legend",
'form_field_1',
'form_field_2'

)

The first parameter is the text for the fieldset legend. This text is context aware, so you can do things like :

Fieldset("Data for {{ user.username }}",
'form_field_1',
'form_field_2'

)

class crispy_forms_foundation.layout.TabItem(name, *fields, **kwargs)
Bases: crispy_forms.bootstrap.Tab

Tab item object. It wraps fields in a div whose default class is “tabs” and takes a name as first argument.

The item name is also slugified to build an id for the tab if you don’t define it using css_id argument.

Example:

TabItem('My tab', 'form_field_1', 'form_field_2', 'form_field_3')

TabItem layout item has no real utility out of a TabHolder.

has_errors(form)
Find tab fields are listed as invalid

render_link(form)
Render the link for the tab-pane. It must be called after render so css_class is updated with active
class name if needed.

class crispy_forms_foundation.layout.TabHolder(*fields, **kwargs)
Bases: crispy_forms.bootstrap.TabHolder

Tabs holder object to wrap Tab item objects in a container:

TabHolder(
TabItem('My tab 1', 'form_field_1', 'form_field_2'),
TabItem('My tab 2', 'form_field_3')

)

2.1. Table of contents 13

crispy-form-foundation Documentation, Release 0.5.5

TabHolder direct children should allways be a TabItem layout item.

The first TabItem containing a field error will be marked as active if any, else this will be just the first
TabItem.

class crispy_forms_foundation.layout.VerticalTabHolder(*fields, **kwargs)
Bases: crispy_forms_foundation.layout.containers.TabHolder

VerticalTabHolder appends vertical class to TabHolder container

class crispy_forms_foundation.layout.AccordionItem(name, *fields, **kwargs)
Bases: crispy_forms.bootstrap.AccordionGroup

Accordion item object. It wraps given fields inside an accordion tab. It takes accordion tab name as first
argument.

The item name is also slugified to build an id for the tab if you don’t define it using css_id argument.

Example:

AccordionItem("group name", "form_field_1", "form_field_2")

class crispy_forms_foundation.layout.AccordionHolder(*fields, **kwargs)
Bases: crispy_forms.bootstrap.Accordion

Accordion items holder object to wrap Accordion item objects in a container:

AccordionHolder(
AccordionItem("group name", "form_field_1", "form_field_2"),
AccordionItem("another group name", "form_field"),

)

AccordionHolder direct children should allways be a AccordionItem layout item.

The first AccordionItem containing a field error will be marked as active if any, else this will be just the first
AccordionItem.

Base

Basic layout items

class crispy_forms_foundation.layout.base.Div(*fields, **kwargs)
Bases: crispy_forms.layout.Div

It wraps fields in a <div>

You can set css_id for a DOM id and css_class for a DOM class.

Example:

Div('form_field_1', 'form_field_2', css_id='div-example',
css_class='divs')

class crispy_forms_foundation.layout.base.Panel(field, *args, **kwargs)
Bases: crispy_forms.layout.Div

Act like Div but add a panel css class.

Example:

Panel('form_field_1', 'form_field_2', css_id='div-example',
css_class='divs')

14 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.5.5

Fields

Field layout items

See :

• Foundation forms for input field components;

• Foundation Switches for switches components;

class crispy_forms_foundation.layout.fields.Field(*args, **kwargs)
Bases: crispy_forms.layout.Field

Layout object, contain one field name and you can add attributes to it easily. For setting class attributes, you
need to use css_class, because class is a reserved Python keyword.

Example:

Field('field_name', style="color: #333;", css_class="whatever",
id="field_name")

class crispy_forms_foundation.layout.fields.InlineField(field, label_column=’large-
3’, input_column=’large-
9’, label_class=’‘, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.fields.Field

Layout object for rendering an inline field with Foundation

Example:

InlineField('field_name')

Or:

InlineField('field_name', label_column='large-8',
input_column='large-4', label_class='')

label_column, input_column, label_class, are optional argument.

class crispy_forms_foundation.layout.fields.InlineJustifiedField(field, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.fields.InlineField

Same as InlineField but default is to be right aligned with a vertical padding

class crispy_forms_foundation.layout.fields.InlineSwitchField(field, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.fields.InlineField

Like SwitchField it use Foundation form switches with checkbox field but within an InlineField

Contrary to SwitchField this play nice with the label to be able to display it (as Foundation form switches
default behavior is to hide the label text)

Example:

InlineSwitchField('field_name')

Or:

InlineSwitchField('field_name', label_column='large-8',
input_column='large-4', label_class='',
switch_class="inline")

2.1. Table of contents 15

http://foundation.zurb.com/sites/docs/v/5.5.3/components/forms.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/switch.html

crispy-form-foundation Documentation, Release 0.5.5

label_column, input_column, label_class, switch_class are optional argument.

class crispy_forms_foundation.layout.fields.MultiField(label, *fields, **kwargs)
Bases: crispy_forms.layout.MultiField

MultiField container. Render to a MultiField

class crispy_forms_foundation.layout.fields.SplitDateTimeField(*args, **kwargs)
Bases: crispy_forms_foundation.layout.fields.Field

Just an inherit from crispy_forms.layout.Field to have a common Field for displaying field with the
django.forms.extra.SplitDateTimeWidget widget.

Simply use a specific template

class crispy_forms_foundation.layout.fields.SwitchField(field, *args, **kwargs)
Bases: crispy_forms.layout.Field

A specific field to use Foundation form switches

You must only use this with a checkbox field and this is a raw usage of this Foundation element, you should see
InlineSwitchField instead.

Example:

SwitchField('field_name', style="color: #333;", css_class="whatever",
id="field_name")

Grid

Foundation grid layout objects

See Foundation Grid for grid components.

class crispy_forms_foundation.layout.grid.Column(field, *args, **kwargs)
Bases: crispy_forms_foundation.layout.base.Div

Wrap fields in a div. If not defined, CSS class will default to large-12 columns. columns class is always
appended, so you don’t need to specify it.

This is the column from the Foundation Grid, all columns should be contained in a Row or a RowFluid and you
will have to define the column type in the css_class attribute.

Example:

Column('form_field_1', 'form_field_2', css_class='small-12 large-6')

Will render to something like that:

<div class"small-12 large-6 columns">...</div>

columns class is always appended, so you don’t need to specify it.

If not defined, css_class will default to large-12.

class crispy_forms_foundation.layout.grid.Row(*fields, **kwargs)
Bases: crispy_forms_foundation.layout.base.Div

Wrap fields in a div whose default class is row. Example:

Row('form_field_1', 'form_field_2', 'form_field_3')

Act as a div container row, it will embed its items in a div like that:

16 Chapter 2. Requires

http://foundation.zurb.com/sites/docs/v/5.5.3/components/grid.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/grid.html

crispy-form-foundation Documentation, Release 0.5.5

<div class"row">Content</div>

class crispy_forms_foundation.layout.grid.RowFluid(*fields, **kwargs)
Bases: crispy_forms_foundation.layout.grid.Row

Wrap fields in a div whose default class is “row row-fluid”. Example:

RowFluid('form_field_1', 'form_field_2', 'form_field_3')

It has a same behaviour than Row but add a CSS class “row-fluid” that you can use to have top level row that
take all the container width. You have to put the CSS for this class to your CSS stylesheets. It will embed its
items in a div like that:

<div class"row row-fluid">Content</div>

The CSS to add should be something like that:

/*
* Fluid row takes the full width but keep normal row and columns

* behaviors

*/
@mixin row-fluid-mixin {

max-width: 100%;
// Restore the initial behavior restrained to the grid
.row{

margin: auto;
@include grid-row;
// Preserve nested fluid behavior
&.row-fluid{

max-width: 100%;
}

}
}
.row.row-fluid{

@include row-fluid-mixin;
}
@media #{$small-up} {

.row.small-row-fluid{ @include row-fluid-mixin; }
}
@media #{$medium-up} {

.row.medium-row-fluid{ @include row-fluid-mixin; }
}
@media #{$large-up} {

.row.large-row-fluid{ @include row-fluid-mixin; }
}
@media #{$xlarge-up} {

.row.xlarge-row-fluid{ @include row-fluid-mixin; }
}
@media #{$xxlarge-up} {

.row.xxlarge-row-fluid{ @include row-fluid-mixin; }
}

It must be included after Foundation grid component is imported.

Buttons

Button layout items

See :

2.1. Table of contents 17

crispy-form-foundation Documentation, Release 0.5.5

• Foundation buttons for button components;

• Foundation button groups for button groups components;

class crispy_forms_foundation.layout.buttons.Button(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Submit input descriptor for the {% crispy %} template tag:

button = Button('Button 1', 'Press Me!')

Note: The first argument is also slugified and turned into the id for the button.

class crispy_forms_foundation.layout.buttons.ButtonGroup(*fields, **kwargs)
Bases: crispy_forms.layout.LayoutObject

It wraps fields in a <ul class="button-group">

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonGroup(
Submit('Save', 'Save'),
Button('Cancel', 'Cancel'),

)

class crispy_forms_foundation.layout.buttons.ButtonHolder(*fields, **kwargs)
Bases: crispy_forms.layout.ButtonHolder

It wraps fields in a <div class="button-holder">

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonHolder(
HTML(Information Saved),
Submit('Save', 'Save')

)

class crispy_forms_foundation.layout.buttons.ButtonHolderPanel(field, *args,
**kwargs)

Bases: crispy_forms_foundation.layout.buttons.ButtonHolder

Act like ButtonHolder but add a panel css class on the main div

class crispy_forms_foundation.layout.buttons.Hidden(name, value, **kwargs)
Bases: crispy_forms.layout.Hidden

Used to create a Hidden input descriptor for the {% crispy %} template tag.

class crispy_forms_foundation.layout.buttons.Reset(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Reset button input descriptor for the {% crispy %} template tag:

reset = Reset('Reset This Form', 'Revert Me!')

18 Chapter 2. Requires

http://foundation.zurb.com/sites/docs/v/5.5.3/components/buttons.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/button_groups.html

crispy-form-foundation Documentation, Release 0.5.5

Note: The first argument is also slugified and turned into the id for the reset.

class crispy_forms_foundation.layout.buttons.Submit(name, value, **kwargs)
Bases: crispy_forms.layout.BaseInput

Used to create a Submit button descriptor for the {% crispy %} template tag:

submit = Submit('Search the Site', 'search this site')

Note: The first argument is also slugified and turned into the id for the submit button.

Form containers

Form container layout objects

See :

• Foundation forms for fieldset component;

• Foundation Accordion for accordion components;

• Foundation Tabs for tabs components;

class crispy_forms_foundation.layout.containers.AccordionHolder(*fields,
**kwargs)

Bases: crispy_forms.bootstrap.Accordion

Accordion items holder object to wrap Accordion item objects in a container:

AccordionHolder(
AccordionItem("group name", "form_field_1", "form_field_2"),
AccordionItem("another group name", "form_field"),

)

AccordionHolder direct children should allways be a AccordionItem layout item.

The first AccordionItem containing a field error will be marked as active if any, else this will be just the first
AccordionItem.

class crispy_forms_foundation.layout.containers.AccordionItem(name, *fields,
**kwargs)

Bases: crispy_forms.bootstrap.AccordionGroup

Accordion item object. It wraps given fields inside an accordion tab. It takes accordion tab name as first
argument.

The item name is also slugified to build an id for the tab if you don’t define it using css_id argument.

Example:

AccordionItem("group name", "form_field_1", "form_field_2")

class crispy_forms_foundation.layout.containers.Fieldset(legend, *fields, **kwargs)
Bases: crispy_forms.layout.Fieldset

It wraps fields in a <fieldset>:

2.1. Table of contents 19

http://foundation.zurb.com/sites/docs/v/5.5.3/components/forms.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/accordion.html
http://foundation.zurb.com/sites/docs/v/5.5.3/components/tabs.html

crispy-form-foundation Documentation, Release 0.5.5

Fieldset("Text for the legend",
'form_field_1',
'form_field_2'

)

The first parameter is the text for the fieldset legend. This text is context aware, so you can do things like :

Fieldset("Data for {{ user.username }}",
'form_field_1',
'form_field_2'

)

class crispy_forms_foundation.layout.containers.TabHolder(*fields, **kwargs)
Bases: crispy_forms.bootstrap.TabHolder

Tabs holder object to wrap Tab item objects in a container:

TabHolder(
TabItem('My tab 1', 'form_field_1', 'form_field_2'),
TabItem('My tab 2', 'form_field_3')

)

TabHolder direct children should allways be a TabItem layout item.

The first TabItem containing a field error will be marked as active if any, else this will be just the first
TabItem.

class crispy_forms_foundation.layout.containers.TabItem(name, *fields, **kwargs)
Bases: crispy_forms.bootstrap.Tab

Tab item object. It wraps fields in a div whose default class is “tabs” and takes a name as first argument.

The item name is also slugified to build an id for the tab if you don’t define it using css_id argument.

Example:

TabItem('My tab', 'form_field_1', 'form_field_2', 'form_field_3')

TabItem layout item has no real utility out of a TabHolder.

has_errors(form)
Find tab fields are listed as invalid

render_link(form)
Render the link for the tab-pane. It must be called after render so css_class is updated with active
class name if needed.

class crispy_forms_foundation.layout.containers.VerticalTabHolder(*fields,
**kwargs)

Bases: crispy_forms_foundation.layout.containers.TabHolder

VerticalTabHolder appends vertical class to TabHolder container

2.2 History

2.2.1 Changelog

Version 0.5.5 - 2017/02/01

• Dropped support for Python 2.6 and Django<1.8;

20 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.5.5

• Added default app settings file;

• Added project test structure;

• Added pretty simple tests to cover layout elements which include some code;

• Added demo app taken from crispy-form-foundation-demo;

• Added dev and test requirements files;

• Updated setup.py;

• Added and enabled minified basic assets for Foundation 5 and 6 for test and demo;

• Finished demo urls/templates to work on every Foundation versions;

• Fixed Flake issues;

• Validated test with Tox for Python 2.7, Python 3.5 and Django>=1.8,<=1.10;

Everything should still work as with previous version.

Version 0.5.4

• Fixed TabHolder and AccordionHolder to have the right active behavior on their items: activate the first
item with a field error if any, else just activate the first item;

Version 0.5.3

• Fixed bugs with button layout elements since django-crispy-forms==1.5.x, this is backward compatible with
previous django-crispy-forms<1.5.x (with pull request #26 to close #25);

• Fixed package infos and README to be more explicit on Django compatibility (1.4 to 1.8 actually tested);

Version 0.5.2

• Use relative imports and enforce absolute imports;

• Add german and french translation with i18n;

Version 0.5.1

• Fix ‘disable_csrf’ option that was not honored in template forms;

Version 0.5.0

• Better layout elements organization;

• Merged pull request #20 for Added Foundation tabs and accordion components based on crispy-forms boot-
strap3 implementation;

• Removed all stuff for Foundation 3 that is not supported anymore;

• Fix TabItem and TabHolder so tab inputs errors are raised to the Tab item;

• Fix AccordionItem and AccordionHolder so accordion inputs errors are raised to the accordion item name;

• Add jquery plugin to add Abide support within tabs and accordions so the input errors are raised to their title
name and not hided into contents;

2.2. History 21

crispy-form-foundation Documentation, Release 0.5.5

• Update documentation;

Version 0.4.1

• Added docs for submit button;

• Fixed bug where the class layout property was being used and modified by instances;

• Added Contributors to the doc;

Version 0.4

• Allow unicode characters in the form title in forms.FoundationFormMixin;

• Extended forms.FoundationFormMixin.init_helper() to allow more customization:

– Renamed attribute input to submit as this is more descriptive

– Allow to give a string which is used as display text for the Submit button

– Allow to give a Submit instance wich is directly used

• Added forms.FoundationFormMixin.title_templatestring attribute to store template string
used to display form title;

• Moved forms.FoundationFormMixin.id attribute name to forms.FoundationFormMixin.form_id;

Version 0.3.9

• Added FoundationFormMixin, FoundationForm and FoundationModelForm in forms.py to
quickly and automatically create a Foundation layout;

• Added InlineSwitchField layout element for better switches usage;

Version 0.3.8

• Redesigned non field errors;

• Added abide error message on field;

• Added missing error message and help text on inline field;

Version 0.3.7

• Added better documentation with Sphinx in ‘docs/’;

Version 0.3.6

• Added ButtonGroup to use Foundation’s Button groups instead of Button holder;

• Added Panel layout element that act like a Div but add a panel css class name;

Version 0.3.5

• Added SwitchField field;

22 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.5.5

Version 0.3.3

• Fix bad template includes in some templates;

Version 0.3.2

• Fixed some css class in templates;

• Added documentation for Abide usage;

• Added ButtonHolderPanel layout object;

Version 0.3.1

• Added InlineField and InlineJustifiedField;

Version 0.3.0

Some backward incompatible change have been done, be sure to check them before upgrading.

• Removed sample view, url and templates. If needed you can find a Django app sample on crispy-forms-
foundation-demo;

• Moved foundation template pack name and its directory to foundation-3. You have to change your
settings.CRISPY_TEMPLATE_PACK if you used the old one;

• Added foundation-5 template pack, it is now the default template pack;

• Removed camelcase on some css classes :

– ctrlHolder has changed to holder;

– buttonHolder has changed to button-holder;

– asteriskField has changed to asterisk;

– errorField has changed to error;

– formHint has changed to hint;

– inlineLabel has changed to inline-label;

– multiField has changed to multiple-fields;

2.2.2 Contributors

• Philip Garnero (@PhilipGarnero);

• Juerg Rast (@jrast);

• JR (@jayarnielsen);

• Carsolcas (@carsolcas);

• Simon Bächler (@sbaechler);

• Manu Phatak (@bionikspoon);

• Florian Eßer (@flesser);

2.2. History 23

https://github.com/sveetch/crispy-forms-foundation-demo
https://github.com/sveetch/crispy-forms-foundation-demo
https://github.com/PhilipGarnero
https://github.com/jrast
https://github.com/jayarnielsen
https://github.com/carsolcas
https://github.com/sbaechler
https://github.com/bionikspoon
https://github.com/flesser

crispy-form-foundation Documentation, Release 0.5.5

24 Chapter 2. Requires

Python Module Index

c
crispy_forms_foundation.forms, 7
crispy_forms_foundation.layout, 9
crispy_forms_foundation.layout.base, 14
crispy_forms_foundation.layout.buttons,

17
crispy_forms_foundation.layout.containers,

19
crispy_forms_foundation.layout.fields,

15
crispy_forms_foundation.layout.grid, 16

25

crispy-form-foundation Documentation, Release 0.5.5

26 Python Module Index

Index

A
AccordionHolder (class in

crispy_forms_foundation.layout), 14
AccordionHolder (class in

crispy_forms_foundation.layout.containers),
19

AccordionItem (class in
crispy_forms_foundation.layout), 14

AccordionItem (class in
crispy_forms_foundation.layout.containers),
19

B
Button (class in crispy_forms_foundation.layout), 12
Button (class in crispy_forms_foundation.layout.buttons),

18
ButtonGroup (class in crispy_forms_foundation.layout),

12
ButtonGroup (class in

crispy_forms_foundation.layout.buttons),
18

ButtonHolder (class in crispy_forms_foundation.layout),
12

ButtonHolder (class in
crispy_forms_foundation.layout.buttons),
18

ButtonHolderPanel (class in
crispy_forms_foundation.layout), 12

ButtonHolderPanel (class in
crispy_forms_foundation.layout.buttons),
18

C
Column (class in crispy_forms_foundation.layout), 10
Column (class in crispy_forms_foundation.layout.grid),

16
crispy_forms_foundation.forms (module), 7
crispy_forms_foundation.layout (module), 9
crispy_forms_foundation.layout.base (module), 14
crispy_forms_foundation.layout.buttons (module), 17

crispy_forms_foundation.layout.containers (module), 19
crispy_forms_foundation.layout.fields (module), 15
crispy_forms_foundation.layout.grid (module), 16

D
Div (class in crispy_forms_foundation.layout), 9
Div (class in crispy_forms_foundation.layout.base), 14

F
Field (class in crispy_forms_foundation.layout), 10
Field (class in crispy_forms_foundation.layout.fields), 15
Fieldset (class in crispy_forms_foundation.layout), 13
Fieldset (class in crispy_forms_foundation.layout.containers),

19
FoundationForm (class in

crispy_forms_foundation.forms), 7
FoundationFormMixin (class in

crispy_forms_foundation.forms), 8
FoundationModelForm (class in

crispy_forms_foundation.forms), 8

H
has_errors() (crispy_forms_foundation.layout.containers.TabItem

method), 20
has_errors() (crispy_forms_foundation.layout.TabItem

method), 13
Hidden (class in crispy_forms_foundation.layout), 12
Hidden (class in crispy_forms_foundation.layout.buttons),

18

I
InlineField (class in crispy_forms_foundation.layout), 11
InlineField (class in crispy_forms_foundation.layout.fields),

15
InlineJustifiedField (class in

crispy_forms_foundation.layout), 11
InlineJustifiedField (class in

crispy_forms_foundation.layout.fields), 15
InlineSwitchField (class in

crispy_forms_foundation.layout), 11

27

crispy-form-foundation Documentation, Release 0.5.5

InlineSwitchField (class in
crispy_forms_foundation.layout.fields), 15

M
MultiField (class in crispy_forms_foundation.layout), 10
MultiField (class in crispy_forms_foundation.layout.fields),

16

P
Panel (class in crispy_forms_foundation.layout), 9
Panel (class in crispy_forms_foundation.layout.base), 14

R
render_link() (crispy_forms_foundation.layout.containers.TabItem

method), 20
render_link() (crispy_forms_foundation.layout.TabItem

method), 13
Reset (class in crispy_forms_foundation.layout), 13
Reset (class in crispy_forms_foundation.layout.buttons),

18
Row (class in crispy_forms_foundation.layout), 9
Row (class in crispy_forms_foundation.layout.grid), 16
RowFluid (class in crispy_forms_foundation.layout), 9
RowFluid (class in crispy_forms_foundation.layout.grid),

17

S
SplitDateTimeField (class in

crispy_forms_foundation.layout), 11
SplitDateTimeField (class in

crispy_forms_foundation.layout.fields), 16
Submit (class in crispy_forms_foundation.layout), 12
Submit (class in crispy_forms_foundation.layout.buttons),

19
SwitchField (class in crispy_forms_foundation.layout),

11
SwitchField (class in crispy_forms_foundation.layout.fields),

16

T
TabHolder (class in crispy_forms_foundation.layout), 13
TabHolder (class in crispy_forms_foundation.layout.containers),

20
TabItem (class in crispy_forms_foundation.layout), 13
TabItem (class in crispy_forms_foundation.layout.containers),

20

V
VerticalTabHolder (class in

crispy_forms_foundation.layout), 14
VerticalTabHolder (class in

crispy_forms_foundation.layout.containers),
20

28 Index

	Links
	Requires
	Table of contents
	History

	Python Module Index

