
crispy-form-foundation Documentation
Release 0.3.7.1

David THENON

November 15, 2014

Contents

1 Links 3

2 Requires 5
2.1 Table of contents . 5

Python Module Index 11

i

ii

crispy-form-foundation Documentation, Release 0.3.7.1

This is a Django application to add django-crispy-forms layout objects for Foundation.

This app does not embed a Foundation release, you will have to install it yourself.

Contents 1

https://www.djangoproject.com/
https://github.com/maraujop/django-crispy-forms
http://github.com/zurb/foundation
http://github.com/zurb/foundation

crispy-form-foundation Documentation, Release 0.3.7.1

2 Contents

CHAPTER 1

Links

• Read the documentation on Read the docs;

• Download his PyPi package;

• Clone it on his Github repository;

• Demo app : crispy-forms-foundation-demo;

3

http://crispy-forms-foundation.readthedocs.org/
http://pypi.python.org/pypi/crispy-forms-foundation
https://github.com/sveetch/crispy-forms-foundation
https://github.com/sveetch/crispy-forms-foundation-demo

crispy-form-foundation Documentation, Release 0.3.7.1

4 Chapter 1. Links

CHAPTER 2

Requires

• django-crispy-forms = 1.4.x;

2.1 Table of contents

2.1.1 Install

Register the app in your project settings like that :

INSTALLED_APPS = (
...
’crispy_forms’,
’crispy_forms_foundation’,
...

)

Then append this part to specify usage of the Foundation set :

Default layout to use with "crispy_forms"
CRISPY_TEMPLATE_PACK = ’foundation-5’

If not defined, the default template pack name used is foundation-5, also you can use foundation-3 but pay
attention that is not really maintained.

All other django-crispy-forms settings option apply, see its documentation for more details.

2.1.2 Usage

Import crispy-forms-foundation then you can use the layout objects in your form :

from crispy_forms_foundation.layout import Layout, Fieldset, Field, SplitDateTimeField, Row, RowFluid, Column, Div, ButtonHolder, Submit, HTML

class YourForm(forms.ModelForm):
"""

Page form
"""
def __init__(self, *args, **kwargs):

self.helper = FormHelper()
self.helper.form_action = ’.’
self.helper.layout = Layout(

Fieldset(

5

https://github.com/maraujop/django-crispy-forms
https://github.com/maraujop/django-crispy-forms

crispy-form-foundation Documentation, Release 0.3.7.1

ugettext(’Content’),
’title’,
’content’,

),
Fieldset(

ugettext(’Display settings’),
Row(

Column(’template’, css_class=’large-6’),
Column(’order’, css_class=’large-3’),
Column(’visible’, css_class=’large-3’),

),
),
Fieldset(

ugettext(’Publish settings’),
’parent’,
Row(

Column(SplitDateTimeField(’published’), css_class=’large-6’),
Column(’slug’, css_class=’large-6’),

),
),
ButtonHolder(

Submit(’submit_and_continue’, ugettext(’Save and continue’)),
Submit(’submit’, ugettext(’Save’)),

),
)

super(YourForm, self).__init__(*args, **kwargs)

The embedded templates are in crispy_forms_foundation/templates/foundation.

Layout items

Inherits from the “uni_form” Layout objects to force templates on TEMPLATE_PACK and use of Foundation CSS
classes

Also the templates are more clean that the included ones from crispy_forms which produce too much spaces and
newlines in the final HTML.

class crispy_forms_foundation.layout.Button(name, value, **kwargs)
Used to create a Submit input descriptor for the {% crispy %} template tag:

button = Button(’Button 1’, ’Press Me!’)

Note: The first argument is also slugified and turned into the id for the button.

class crispy_forms_foundation.layout.ButtonGroup(*fields, **kwargs)
It wraps fields in a <ul class="button-group">

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonGroup(
Submit(’Save’, ’Save’),
Button(’Cancel’, ’Cancel’),

)

6 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.3.7.1

class crispy_forms_foundation.layout.ButtonHolder(*fields, **kwargs)
It wraps fields in a <div class="button-holder">

This is where you should put Layout objects that render to form buttons like Submit. It should only hold HTML
and BaseInput inherited objects.

Example:

ButtonHolder(
HTML(Information Saved),
Submit(’Save’, ’Save’)

)

class crispy_forms_foundation.layout.ButtonHolderPanel(field, *args, **kwargs)
Act like ButtonHolder but add a panel css class on the main div

class crispy_forms_foundation.layout.Column(field, *args, **kwargs)
It wraps fields in a div. If not defined, CSS class will default to large-12 columns. columns class is
always appended, so you don’t need to specify it.

This is the column from the Foundation Grid, all columns should be contained in a Row or a RowFluid and you
will have to define the column type in the css_class attribute.

Example:

Column(’form_field_1’, ’form_field_2’, css_class=’small-12 large-6’)

Will render to something like that:

<div class"small-12 large-6 columns">...</div>

columns class is always appended, so you don’t need to specify it.

If not defined, css_class will default to large-12.

class crispy_forms_foundation.layout.Div(*fields, **kwargs)
It wraps fields in a <div>

You can set css_id for a DOM id and css_class for a DOM class. Example:

Div(’form_field_1’, ’form_field_2’, css_id=’div-example’, css_class=’divs’)

class crispy_forms_foundation.layout.Field(*args, **kwargs)
Layout object, It contains one field name, and you can add attributes to it easily. For setting class attributes, you
need to use css_class, as class is a Python keyword.

Example:

Field(’field_name’, style="color: #333;", css_class="whatever", id="field_name")

class crispy_forms_foundation.layout.Fieldset(legend, *fields, **kwargs)
It wraps fields in a <fieldset>:

Fieldset("Text for the legend",
’form_field_1’,
’form_field_2’

)

The first parameter is the text for the fieldset legend. This text is context aware, so you can do things like :

Fieldset("Data for {{ user.username }}",
’form_field_1’,

2.1. Table of contents 7

http://foundation.zurb.com/docs/components/grid.html

crispy-form-foundation Documentation, Release 0.3.7.1

’form_field_2’
)

class crispy_forms_foundation.layout.Hidden(name, value, **kwargs)
Used to create a Hidden input descriptor for the {% crispy %} template tag.

class crispy_forms_foundation.layout.InlineField(field, label_column=’large-3’,
input_column=’large-9’, label_class=’‘,
*args, **kwargs)

Layout object for rendering an inline field with Foundation

Example:

InlineField(’field_name’)

class crispy_forms_foundation.layout.InlineJustifiedField(field, *args, **kwargs)
Same as InlineField but default is to be right aligned with a vertical padding

class crispy_forms_foundation.layout.MultiField(label, *fields, **kwargs)
MultiField container. Renders to a MultiField

class crispy_forms_foundation.layout.Panel(field, *args, **kwargs)
Act like Div but add a panel css class.

Example:

Panel(’form_field_1’, ’form_field_2’, css_id=’div-example’, css_class=’divs’)

class crispy_forms_foundation.layout.Reset(name, value, **kwargs)
Used to create a Reset button input descriptor for the {% crispy %} template tag:

reset = Reset(’Reset This Form’, ’Revert Me!’)

Note: The first argument is also slugified and turned into the id for the reset.

class crispy_forms_foundation.layout.Row(*fields, **kwargs)
It wraps fields in a div whose default class is row. Example:

Row(’form_field_1’, ’form_field_2’, ’form_field_3’)

Act as a div container row, it will embed its items in a div like that:

<div class"row">Your stuff</div>

class crispy_forms_foundation.layout.RowFluid(*fields, **kwargs)
It wraps fields in a div whose default class is “row row-fluid”. Example:

RowFluid(’form_field_1’, ’form_field_2’, ’form_field_3’)

It has a same behaviour than Row but add a CSS class “row-fluid” that you can use to have top level row that
take all the container width. You have to put the CSS for this class to your CSS stylesheets. It will embed its
items in a div like that:

<div class"row row-fluid">Your stuff</div>

The CSS to add should be something like that:

.row-fluid {
width: 100%;
max-width: 100%;

8 Chapter 2. Requires

crispy-form-foundation Documentation, Release 0.3.7.1

min-width: 100%;
}

class crispy_forms_foundation.layout.SplitDateTimeField(*args, **kwargs)
Just an inherit from crispy_forms.layout.Field to have a common Field for displaying field with the
django.forms.extra.SplitDateTimeWidget widget.

Simply use a specific template

class crispy_forms_foundation.layout.Submit(name, value, **kwargs)
Used to create a Submit button descriptor for the {% crispy %} template tag:

submit = Submit(’Search the Site’, ’search this site’)

Note: The first argument is also slugified and turned into the id for the submit button.

class crispy_forms_foundation.layout.SwitchField(field, *args, **kwargs)
A specific field to use Foundation form switches

You should only use this with a checkbox field

Example:

SwitchField(’field_name’, style="color: #333;", css_class="whatever", id="field_name")

Use Foundation 5 Abide

You can use Abide validation in your form but note that there is no support within the layout objects. You will have to
add the required attribute (and eventually its pattern) on your field widgets in your form.

So to enable Abide you’ll have to load its Javascript library if you don’t load yet the whole Foundation library, then in
your form helper you will have to its attribute on the form like this :

class SampleForm(forms.Form):
def __init__(self, *args, **kwargs):

self.helper = FormHelper()
self.helper.attrs = {’data_abide’: ’’}
self.helper.form_action = ’.’
self.helper.layout = Layout(

...
)

super(SampleForm, self).__init__(*args, **kwargs)

Then add the required attribute on a field widget like this :

textarea_input = forms.CharField(label=_(’Textarea’), widget=forms.Textarea(attrs={’required’:’’}), required=True)

2.1.3 Changelog

Version 0.3.6

• Add ‘ButtonGroup‘_ to use Foundation’s Button groups instead of Button holder;

• Add ‘Panel‘_ layout element that act like a Div but add a panel css class name;

2.1. Table of contents 9

http://foundation.zurb.com/docs/components/abide.html
http://foundation.zurb.com/docs/components/abide.html

crispy-form-foundation Documentation, Release 0.3.7.1

Version 0.3.5

• Add ‘SwitchField‘_ field;

Version 0.3.3

• Fix bad template includes in some templates;

Version 0.3.2

• Fix some css class in templates;

• Add documentation for ‘Abide‘_ usage;

• Add ‘ButtonHolderPanel‘_ layout object;

Version 0.3.1

• Added ‘InlineField‘_ and ‘InlineJustifiedField‘_;

Version 0.3.0

Some backward incompatible change have been done, be sure to check them before upgrading.

• Removed sample view, url and templates. If needed you can find a Django app sample on ‘crispy-forms-
foundation-demo‘_;

• Moving foundation template pack name and its directory to foundation-3. You have to change your
settings.CRISPY_TEMPLATE_PACK if you used the old one;

• Add foundation-5 template pack, it is now the default template pack;

• Removing camelcase on some css classes :

– ctrlHolder has changed to holder;

– buttonHolder has changed to button-holder;

– asteriskField has changed to asterisk;

– errorField has changed to error;

– formHint has changed to hint;

– inlineLabel has changed to inline-label;

– multiField has changed to multiple-fields;

10 Chapter 2. Requires

Python Module Index

c
crispy_forms_foundation.layout, 6

11

crispy-form-foundation Documentation, Release 0.3.7.1

12 Python Module Index

Index

B
Button (class in crispy_forms_foundation.layout), 6
ButtonGroup (class in crispy_forms_foundation.layout),

6
ButtonHolder (class in crispy_forms_foundation.layout),

6
ButtonHolderPanel (class in

crispy_forms_foundation.layout), 7

C
Column (class in crispy_forms_foundation.layout), 7
crispy_forms_foundation.layout (module), 6

D
Div (class in crispy_forms_foundation.layout), 7

F
Field (class in crispy_forms_foundation.layout), 7
Fieldset (class in crispy_forms_foundation.layout), 7

H
Hidden (class in crispy_forms_foundation.layout), 8

I
InlineField (class in crispy_forms_foundation.layout), 8
InlineJustifiedField (class in

crispy_forms_foundation.layout), 8

M
MultiField (class in crispy_forms_foundation.layout), 8

P
Panel (class in crispy_forms_foundation.layout), 8

R
Reset (class in crispy_forms_foundation.layout), 8
Row (class in crispy_forms_foundation.layout), 8
RowFluid (class in crispy_forms_foundation.layout), 8

S
SplitDateTimeField (class in

crispy_forms_foundation.layout), 9
Submit (class in crispy_forms_foundation.layout), 9
SwitchField (class in crispy_forms_foundation.layout), 9

13

	Links
	Requires
	Table of contents

	Python Module Index

